Substituent Effect of Phenolic Aldehyde Inhibition on Alcoholic Fermentation by Saccharomyces cerevisiae

نویسندگان

  • Rui Xie
  • Maobing Tu
  • Thomas Elder
چکیده

Phenolic compounds significantly inhibit microbial fermentation of biomass hydrolysates. To understand the quantitative structure−inhibition relationship of phenolic aldehydes on alcoholic fermentation, the effect of 11 different substituted benzaldehydes on the final ethanol yield was examined. The results showed that the degree of phenolic benzaldehyde inhibition was strongly associated with the position of phenolic hydroxyl groups but not the number of phenolic hydroxyl groups. It was observed that ortho-substituted 2-hydroxybenzaldehyde resulted in 15−20-fold higher inhibition than the metaor parasubstituted analogues of 3and 4-hydroxybenzaldehydes. From the correlation of the molecular descriptors to inhibition potency in yeast fermentation, we found a strong relationship between the octanol/water partition coefficient (log P) of aldehydes and the EC50 value. The most inhibitory 2-hydroxybenzaldehyde has the highest log P and possesses an ortho −OH group capable of forming an intramolecular hydrogen bond, which can potentially increase the cell membrane permeability and toxicity. The results also indicated that the calculated free energy change between phenolic aldehydes and amino acids can be used to predict their structure−inhibitory activity relationship.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products

BACKGROUND Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known t...

متن کامل

Characteristics of Different Brewer’s Yeast Strains Used for Non-alcoholic Beverage Fermentation in Media Containing Different Fermentable Sugars

Fermentation characteristics of four strains of brewer's yeast (Saccharomyces cerevisiae strain 70424, S.rouxii strain 2535, S. rouxii strain 2531 and Saccharomyces ludwigii strain 3447) in Yeast Moldbrothcontaining four different fermentable sugars (glucose, fructose, maltose, or sucrose) were studied. Theaim was to consider the suitability of different strain/sugar treatment...

متن کامل

Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase.

To improve production of fuel ethanol from renewable raw materials, laccase from the white rot fungus Trametes versicolor was expressed under control of the PGK1 promoter in Saccharomyces cerevisiae to increase its resistance to phenolic inhibitors in lignocellulose hydrolysates. It was found that the laccase activity could be enhanced twofold by simultaneous overexpression of the homologous t-...

متن کامل

Changes in the Concentration of Carbonyl Compounds during the Alcoholic Fermentation Process Carried out with Saccharomyces cerevisiae Yeast.

The aim of the study was to determine the influence of the source material and the applied S. cerevisiae strain on the concentrations of carbonyl fractions in raw spirits. Acetaldehyde was the most common aldehyde found, as it accounted for 88-92% of the total amount of aldehydes. The concentration of acetaldehyde in maize, rye and amaranth mashes was highly correlated with fermentation product...

متن کامل

Production of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor

In this study, solid state fermentation (SSF) was carried out to produce single cell protein (SCP) from sugarcane bagasse using Saccharomyces cerevisiae. The SSF experiment were performed in a tray bioreactor. The influence of several parameters including extraction buffer, initial moisture content of substrate, fermentation time, relative humidity in bioreactor, the bioreactor temperature and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016